Твёрдость

Твёрдость фото 1

Твёрдость – это способность материала объекта контроля  противостоять пластичной или упругой деформации при действии на его внешний слой другим, более твёрдым материалом (индентором). Твёрдые вещества имеют, в основном, кристаллическое строение, которое определяется правильным расположением частиц вещества – молекул, атомов, ионов – в определённых его точках. Такая структура расположения частиц в веществе называется кристаллической решёткой, а точки, в которых расположены эти частицы, называются её узлами.

В зависимости от того, какие частицы размещены в узлах решётки и какие связи между ними, кристаллические решётки делятся на четыре типа: 

    • металлические;
    • молекулярные;
    • атомные;
    • ионные.

От типа кристаллической решётки, а также характера и вида связей между частицами вещества зависят физические свойства твёрдого тела.

Твёрдость фото 2

Металлические решётки – это решётки, в узлах которых находятся атомы и ионы, имеющие между собой металлическую связь разной прочности.

К таким веществам относятся металлы и сплавы, отличающиеся твёрдостью и тугоплавкостью в очень широких пределах. При этом, чем сильнее связь между частицами вещества, тем выше эти показатели. Электроны металла, движущиеся между узлами решётки, образуют «электронный газ», обеспечивающий устойчивость такой решётки.

Атомные решётки в своих узлах содержат атомы, связанные очень прочными ковалентными связями.

Такая решётка характерна для простых веществ: кремний (Si), графит (С), алмаз (С), бор (В), германий (Ge) – с неполярной ковалентной связью; также для сложных веществ: карбид кремния (SiC), оксид кремния (SiO2), оксид алюминия (Al2O3), нитрид бора (BN) – с полярной ковалентной связью. Эти вещества очень твёрдые и очень тугоплавкие.

Твёрдость фото 3

Твёрдость фото 4

Молекулярные решётки имеют в своих узлах молекулы веществ со слабыми межмолекулярными связями.

В обычных условиях это твёрдые органические (кроме солей) летучие вещества, имеющие небольшую твёрдость, жидкости или газы.

Ионные решётки образуются веществами с ионным видом связи (рис. 2), такими как гидроксиды и оксиды щелочных и щелочноземельных металлов, галогениды (IA, IIA групп), соли (напр. КОН, СаСО3, NH4NO3, С2Н5ОК, СН3СООК, [CH3NH3]Cl).

Между ионами, которые расположены в узлах решётки, существует электростатическое притяжение - такая связь очень прочная. Ионные кристаллы твёрдые, тугоплавкие, но хрупкие.

Твёрдость фото 5

Определение твёрдости объекта контроля производится по различным методам, разработанным многими учёными, именами которых эти методы названы. Все эти методы определения твёрдости подразделяются на две основные группы – статические и динамические, в зависимости от применения индентора.

Статические методы

Получили наибольшее распространение в практике. Они основаны на непрерывном и медленном вдавливании индентора в объект контроля с определённым постоянным усилием. Наиболее востребованными из них являются: метод Бринелля, определяемый стандартом ГОСТ 9012-59; метод Роквелла, регламентируемый ГОСТом 9013-59 (ИСО 6508-86); метод Виккерса в соответствии с ГОСТ 2999-75.

Динамические методы

Метод Шора (способ упругого отскока) регламентируется требованиями стандарта ГОСТ 23273-78. Суть метода при определении твёрдости вещества объекта контроля состоит в измерении высоты отскока индентора, падающего с определённой высоты, от поверхности объекта контроля.

Метод Польди состоит в том, что одновременно в образец и эталон с известной твёрдостью посредством ударной нагрузки вдавливается стальной закалённый шарик. Твёрдость объекта контроля определяется путём сопоставления диаметров отпечатков в эталоне и образце. Существенным недостатком метода Польди является его большая погрешность, составляющая 7-15%, иногда до 30%, что значительно ограничивает область его применения.

Введите ваше Имя и Фамилию:

Отправить

или

Войдите, чтобы оставить комментарий