УСТРОЙСТВО ОЦЕНКИ КАЧЕСТВА ПАЯНЫХ СОЕДИНЕНИЙ

КОНСТАНТА ВД1

№ _____

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Содержание

1.	Техническое описание и работа	4
1.1.	Назначение	4
1.2.	Рабочие условия эксплуатации прибора	4
1.3.	Технические характеристики	4
1.4.	Устройство и работа	5
1.5.	Маркировка	5
1.6.	Упаковка	6
2.	Комплектность	6
3.	Использование по назначению	6
3.1.	Подготовка к использованию	6
3.2.	Включение прибора	7
3.3.	Индикатор прибора	8
3.4.	Клавиатура прибора	9
3.5.	Проведение контроля	9
3.6.	Физические ограничения возможности обнаружения	
	трещин и расслоений вихретоковым методом	10
3.7.	Общие требования к контрольным образцам	10
3.8.	Действия при ошибках в процессе настройки	
	прибора	11
3.9.	Включение/выключение подсветки индикатора	
	прибора	12
4.	Техническое обслуживание	13
5.	Указания мер безопасности	13
6.	Ресурсы, сроки службы и хранения, гарантия	
	изготовителя	13
7.	Хранение	13
8.	Транспортирование	13
9.	Свидетельство о приемке	13

Настоящее руководство по эксплуатации предназначено для ознакомления с принципом действия и правилами эксплуатации устройства оценки качества паяных соединений «Константа ВД1», в дальнейшем прибора, изготовленного в соответствии с комплектом конструкторской документации УАЛТ.151.000.00. Руководство по эксплуатации рассчитано на персонал, имеющий опыт работы со средствами неразрушающего контроля.

1. Техническое описание и работа

1.1. Назначение

Прибор предназначен для оценки качества паяных соединений лобовых частей обмоток статоров турбогенераторов.

 1.2. Рабочие условия эксплуатации прибора Температура окружающего воздуха для прибора от -10°C до +40°C; Относительная влажность воздуха до 98% при +35°C.
 1.3. Технические характеристики 1.3.1. Максимальная толщина контролируемого паяного соединения: для преобразователя ПА-ПС-60э-Си, мм
- для преобразователя ПА-ПС-100э-Сu, мм
1.3.3. Максимальная ширина (минимальный из длины и ширины размер) контролируемого паяного соединения: - для преобразователя ПА-ПС-60э-Сu, мм
- для преобразователя ПА-ПС-100э-Сu, мм
- для преобразователя ПА-ПС-60э-Сu, мм
1.3.6. Габаритные размеры оцениваемых паяных соединений, содержащих элементарные проводники, мм от 120х100х45 до 40х30х20.
1.3.7. Габаритные размеры, мм, не более: - блока обработки информации.

1.	.3.8. Масса, кг, не более:	
-	блока обработки информации	. 0,2
-	преобразователя ПА-ПСЭ-60-Си	. 1,0
	преобразователя ПА-ПСЭ-100-Си	

1.4. Устройство и работа

В основу работы дефектоскопа положен вихретоковый метод получения первичной информации. Преобразователи экранного типа состоят из двух соосных катушек (катушка возбуждения и приемная катушка).

Результаты контроля отображаются на матричном жидкокристаллическом индикаторе.

Расположение клавиатуры и индикатора на лицевой панели блока обработки информации прибора приведено на Рисунке 1.

Рисунок 1.

1.5. Маркировка

1.4.1. Маркировка преобразователя

На шильде, установленном на проводе возле разъема наносится:

- Условное обозначение типа преобразователя.
- 1.4.2. Маркировка блока обработки информации

На лицевую панель блока обработки информации наносится условное обозначение прибора.

На заднюю крышку – заводской номер и год выпуска.

1.6. Упаковка

Блок обработки информации и преобразователи хранятся в упаковке, исключающей их повреждение при транспортировке.

2. Комплектность

- 2.1. Блок обработки информации 1 шт.
- 2.2. Преобразователь ПА-ПС-100э-Cu 1 шт.
- 2.3. Преобразователь ПА-ПС-60э-Си 1 шт.
- 2.4. Батарея аккумуляторная NiMH размер AAA 4 шт.
- 2.5. Зарядное устройство 1 шт.
- 2.6. Руководство по эксплуатации 1 шт.
- 2.7. Упаковка 1 шт.

3. Использование по назначению

3.1. Подготовка к использованию

- 3.1.1. Работа от аккумуляторов
- 3.1.1.1. Установить аккумуляторы в батарейный отсек, соблюдая полярность контактов.
- 3.1.1.2. Произвести контроль заряда аккумулятора, для чего включить прибор нажатием клавиши «ВКЛ/ВЫКЛ». В случае если аккумуляторы разряжены (заряд не более 10 % от начального) выдается сообщение

Батарея разряжена!!!

на две секунды раз в минуту, при этом работа с прибором может продолжаться, или

Заменить батарею!!!

на две секунды, после чего прибор выключается, что свидетельствует о необходимости проведения заряда аккумуляторов.

В случае выдачи первого сообщения работа с прибором может продолжаться непродолжительное время до выдачи прибором второго сообщения, запрещающего работу.

3.1.1.3. Для заряда аккумуляторов их следует извлечь из батарейного отсека и произвести их заряд в соответствии с п. 3.1.2.

3.1.2. Заряд аккумулятора

Для зарядки аккумуляторов необходимо:

- Вставить аккумуляторы в зарядное устройство, соблюдая полярность.
- Включить зарядное устройство в сеть напряжения питания 220 В 50 Гц.

Время полного заряда аккумуляторов определяется зарядным устройством и составляет 8-10 часов. Запрещается оставлять зарядное устройство во время заряда без наблюдения.

- 3.1.3. Работа от элементов питания типа Alkaline
- 3.1.3.1. Установить элементы питания в батарейный отсек, соблюдая полярность контактов.
- 3.1.3.2. Произвести контроль элементов питания, для чего включить прибор нажатием клавиши «ВКЛ/ВЫКЛ». В случае если элементы питания разряжены (заряд не более 20 % от начального) выдается сообщение

Батарея разряжена!!!

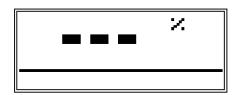
На две секунды раз в минуту, при этом работа с прибором может продолжаться, или

Заменить батарею!!!

На две секунды, после чего прибор выключается, что свидетельствует о необходимости замены элементов питания.

В случае выдачи первого сообщения работа с прибором может продолжаться непродолжительное время до выдачи прибором второго сообщения, запрещающего работу.

3.2. Включение прибора


Подготовить прибор к работе в соответствии с п. 3.1 и включить его нажатием кнопки «ВКЛ/ВЫКЛ». В случае нормального заряда батареи на индикатор кратковременно будет выдано сообщение о названии прибора и версии программного обеспечения

После этого, если преобразователь не подключен, будет выдано сообщение

Если преобразователь подключен, будет выдано сообщение

свидетельствующее о переходе в рабочий режим и готовности прибора к проведению контроля (цифры и расположение вертикальной полоски внизу могут отличаться от указанных на рисунке и зависят от настройки подключенного преобразователя).

3.3. Индикатор прибора

В рабочем режиме на индикаторе отображается следующая информация (См. Рисунок 3.)

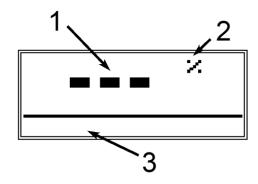


Рисунок 3. Индикатор прибора «Константа ВД1» в рабочем режиме

На Рисунке 3 цифрами обозначены:

- 1 величина сигнала, принятого с преобразователя, %;
- 2 единицы измерения %;
- 3 шкала аналоговой интерпретации цифрового значения величены сигнала, принятого с преобразователя, безразмерная величина;

3.4. Клавиатура прибора

На клавиатуре, расположенной на лицевой панели прибора установлено 9 кнопок, Рисунок 4.

Рисунок 4. Клавиатура прибора

На Рисунке 4 цифрами обозначены:

- 1 Кнопка «НОЛЪ». Служит для присвоения текущему значению величены сигнала значения «0».
- 2 Кнопка «ПОРОГ». Служит для присвоения текущему значению величены сигнала значения «100%».
 - 3 Кнопка «ФВЧ». В данной версии прибора не используется
 - 4 Кнопки «▲» и «▼»:
- В рабочем режиме в данной версии прибора не используются;
- В режимах настройки служат для изменения параметров в текущем режиме.
- 5 Кнопки «+» и «-» в секторе «ШКАЛА». В данной версии прибора не используется.
- 6 Кнопка «РЕЖИМ». Служит для последовательной смены режимов работы прибора: режим включения/выключения подсветки рабочий режим . . .
- 7 Кнопка «ВКЛ/ВЫКЛ». Служит для включения/выключения прибора.

3.5. Проведение контроля

- 3.5.1. Установить преобразователь на контрольный образец дефекта имитирующий полностью не пропаянный образец. Нажать клавишу «НОЛЬ». При этом прибор присвоит текущему значению величены сигнала значение «0».
- 3.5.2. Установить преобразователь на контрольный образец имитирующий полностью пропаянный (монолитный) образец. Нажать клавишу «ПОРОГ». При этом прибор присвоит текущему значению величены сигнала значение «100 %».
- 3.5.3. Нажатием на кнопки « \blacktriangle » или « \blacktriangledown » настроить точно значение отображаемой величены (если требуется установить значение отличное от «0» или «100 %»).
- 3.5.4. Установить преобразователь на контролируемый объект. При этом на дисплее отобразится величина сигнала, в %, соответствующая степени монолитности соединения.
- 3.5.5. Снимите преобразователь с контролируемого объекта. Переверните преобразователь вдоль оси ручки преобразователя на 180° (поменяйте местами катушки измерительную и возбуждения). Повторно установить преобразователь на контролируемый объект. При этом на дисплее отобразится величина сигнала, в %, соответствующая степени монолитности соединения.
- 3.5.6. Оценивая показания, полученные в п.п. 3.5.4 и 3.5.5 оцените качество пайки соединения.

3.6. Физические ограничения возможности обнаружения трещин и расслоений вихретоковым методом

Из-за физических особенностей распространения вихревых токов прибор не обнаруживает трещины и расслоения плоскость которых параллельна поверхности изделия на которой установлен преобразователь.

3.7. Общие требования к контрольным образцам дефектов (справочная информация)

- 3.7.1. Контрольные образцы дефектов предназначены для настройки прибора при контроле конкретных конструкций и типоразмеров паяных соединений.
- 3.7.2. Выбор образцов для применения в качестве контрольных осуществляет ответственный за проведение контроля, учитывая требования нормативно-технической документации, требования завода-изготовителя контролируемой электрической машины, технические характеристики прибора, указанные в настоящем руководстве по эксплуатации и др.

- 3.7.3. Образец 100% должен иметь меньшее количество дефектов пайки, чем образец 0%, или вовсе не должен их иметь.
- 3.7.4. Контрольные образцы должны иметь такие же размеры и форму, как и контролируемые соединения для компенсации влияния краевого эффекта.
- 3.7.5. Допускается в качестве контрольного образца 0% применять одно не запаянное соединение непосредственно на электрической машине. После настройки прибора и проведения контроля всех остальных соединений электрической машины, последнее соединение запаивается и, не меняя настройки прибора, контролируется отдельно.
- 3.7.6. Допускается в качестве контрольного образца 100% применять монолитный образец, выполненный из меди той же электропроводности, что и контролируемые соединения, имеющий такие же размеры и форму, что и контролируемые соединения.
- 3.7.7. Допускается в качестве образца 100% применять натурный образец с гарантированно хорошей пайкой. Качество пайки рекомендуется дополнительно подтвердить, используя другие виды неразрушающего контроля.
- 3.7.8. Не допускается применять в качестве контрольных, образцы выполненные из бронзы, меди другой марки или других сплавов, имеющих электропроводность отличную от электропроводности материала контролируемых соединений.
- 3.7.9. По вопросам конструкции, изготовления и приобретения контрольных образцов обращаться в фирму изготовитель электрической машины.

3.8. Действия при ошибках в процессе настройки прибора

В случае ошибочных действий в процессе настройки прибора следует одновременно нажать на кнопки «+» и «-». При этом будет выдано сообщение

При нажатии на кнопку «-» произойдет отмена произведенного действия. При нажатии на кнопку «+» дефектоскоп произведет возврат к заводским настройкам. При этом к заводским установкам вернутся значения следующих параметров :

- Значение величены сигнала, соответствующего значению «0»;
- Значение величены сигнала, соответствующего значению «100 %»;

3.8.1.Все настройки прибора при их изменении и выключении прибора сохраняются в памяти преобразователя. При подключении различных преобразователей все настройки соответствуют настройкам, сохраненным в памяти подключенного преобразователя.

3.9. Включение/выключение подсветки индикатора прибора

3.9.1.Для включения/выключения подсветки индикатора следует нажимать на кнопку «РЕЖИМ», пока не появится сообщение

3.9.2.Для включения подсветки следует нажать на кнопку «▲». При этом подсветка включается и кратковременно выдается сообшение

Подсветка включена!

Подсветка индикатора выключается автоматически, если в течение 6 секунд не производится нажатие на клавиши. При нажатии на любую клавишу подсветка индикатора включается вновь на 6 секунд. Во время проведения контроля, при установленном преобразователе на объект контроля, подсветка индикатора включается автоматически и выключается через две секунды, после того как преобразователь отводится от объекта контроля.

3.9.3.Для выключения подсветки следует нажать на кнопку «▼». При этом подсветка выключается и кратковременно выдается сообщение

Подсветка выключена

3.9.4.Использование подсветки сокращает время работы от аккумуляторов или элементов питания.

4. Техническое обслуживание

Техническое обслуживание прибора производится изготовителем в случае обнаружения неисправностей в работе.

5. Указания мер безопасности

Питание прибора осуществляется от двух аккумуляторных батарей или элементов питания AAA Alkaline или их аналогов с номинальным напряжением от 1,2 до 1,5В.

6. Ресурсы, сроки службы и хранения, гарантия изготовителя

- 6.1. Срок службы прибора 5 лет.
- 6.2. Изготовитель гарантирует соответствие прибора требованиям технических условий при соблюдении потребителем условий транспортирования, хранения, и эксплуатации.
- 6.3. Гарантийный срок эксплуатации со дня отправки потребителю 12 месяцев.

7. Хранение

- 7.1. Прибор должен храниться при температуре окружающего воздуха от +5°C до +40°C и относительной влажности воздуха до +80% при температуре 25°C, что соответствует условиям хранения 1 по ГОСТ 15150.
- 7.2. В помещении для хранения не должно быть пыли, паров кислот, щелочей и агрессивных газов.

8. Транспортирование

- 8.1. Транспортирование прибора в упаковке может производиться любым видом транспорта в соответствии с требованиями и правилами перевозки, действующими на данном виде транспорта.
- 8.2. При транспортировке, погрузке и хранении на складе прибор должен оберегаться от ударов, толчков и воздействия влаги.

· · · · · · · · · · · · · · · · · · ·		, ,		
9. Свидетельств	во о приемке			
Устройства оценк	и качества пая	ных соединений «Константа		
ВД1» №	соответс	соответствует технической документации		
и признано годным к				
1	3			
Начальник ОТК				
Дата	МΠ	ПОДПИСЬ:		
7 1		r 1		